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Microwave Oven Mode Tuning by Slab
Dielectric Loads

THEODORE G. MIHRAN, FELLOW, IEEE

Abstract—Cold-test measurements have been made of mode tuning in a
microwave oven cavity containing a slab water load of variable height. Two
distinct types of mode behavior are observed: 1) a mode which is tuned
generally upward in frequency, proceeding in sawtooth steps, and 2) a
mode whose resonant frequency is nearly constant, except for slight
downward perturbations at regular intervals.

Two theoretical treatments are presented to understand and verify the
observed mode behavior. A plane wave analysis is found to illustrate most
of the qualitative aspects of mode tuning, such as its stairstep behavior and
the phenomenon of mode linking by loss. A more accurate, quantitative
description of mode behavior is obtained by generalizing dispersion rela-
tionships which have been developed in the past for the anmalysis of
rectangular waveguides with dielectric slabs.

Agreement between theory and measurement is good in general, except
for light loads in case 2 above.

I. INTRODUCTION

N SPITE of the rapidly growing commercial impor-

tance of microwave ovens, their design remains prim-
arily an empirical art. In 1976 Osepchuk {1] attributed the
lack of oven theory to “the over-whelming complexity of
the oven-food configuration as an object for study involv-
ing Maxwell’s equations.” This paraphrases the observa-
tion made ten years earlier by Piischner [2] that the
presence of a dielectric load in a microwave oven creates
a situation in which “cavity resonance is very involved
and can only be clarified in the end by experiment.”

Recently a computer program for the general analysis of
simple dielectric discontinuities in three-dimensional
structures has been developed [3]. This program appears
to be well suited for numerical studies of microwave oven
mode tuning by dielectric loads. To use such a program
effectively it is useful to study first the related one- and
two-dimensional cases as is done here. These studies pro-
vide general insights into the true nature of the three-di-
mensional problem and can guide the application of the
more accurate (but more expensive) model to only those
cases which are most significant.

A one-dimensional analysis of the effect of a slab of
lossy dielectric on the resonant frequency of the space
bounded by two metallic planes is given in Section II.
This analysis discloses a number of concepts that are
fundamental to mode tuning in microwave ovens. A prob-
lem more closely related to the geometry of practical
microwave ovens can be solved rather easily, namely that
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of a rectangular cavity containing a lossy dielectric slab
which completely fills two of the three cavity dimensions.
The analysis of this case, presented in Section IV, shows
that mode tuning for a given dielectric fill ratio is greatly
reduced compared to the one-dimensional case of Section
IL

In order to verify the validity of the analysis given in
Section 1V, a detailed set of mode tuning measurements
was made in a commercial 915-MHz microwave oven
which had been modified to accept a slab water load.
These cold-test measurements, presented in Section III,
indicate that two resonant modes dominate the transmis-
sion characteristic of this oven over the frequency range
from 900 to 1100 MHz. One of these modes is adequately
described by the theory presented in Section IV. Some
aspects of the tuning of the other mode are described
reasonably well by the present theory, but for light loads
it is evident that the analysis given here needs further
modification.

II. ParALLEL PLANE TEM-MODE ANALYSIS

A. Lossless Dielectric

Consider two parallel metallic planes at z=0 and z=4A,
as indicated by the upper and lower lines in Fig. 1(a). For
TEM wave propagation in the z direction this structure
will resonate at frequencies for which the plate spacing %
is an integral number of half wavelengths. In MKS units
the resonant frequencies are

£,=3%x10*n/2h, n=1,2,3---. (D

Between the plates in Fig. 1(a) consider that a dielectric
sheet extends from z=0 to z=d, defining region 2. The
volume above the sheet is defined as region 1. If the
relative dielectric constant e of the sheet is greater than
unity, additional electric field energy will be stored in the
sheet and all of the resonant frequencies given by (1) will
be reduced. The equation which establishes resonant
frequency as a function of the fraction d/h of the space
occupied by the dielectric sheet can be written by inspec-
tion, referring to the equivalent transmission line circuit
shown in Fig. 1(b). By taking a reference plane at the
surface of the dielectric and noting that the impedance
Z,, tan k,(h—d) looking in the +:z direction must equal
the negative of the impedance seen in the —z direction
one obtains the expression
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Fig. 1. (a) Configuration for plane wave analysis. (b) Equivalent circuit
at dielectric surface. (c) Resonant cavity with dielectric slab at bottom,
completely filling x and y dimensions.
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Fig. 2. Tuning of the first four modes by a lossless dielectric slab with
€=77— 0. Plane wave analysis, # =6.4176".

ZOl tan kl(h - d) = - 202 tan kzd (2)

where Z,, =377, Z,=377/Ve, k =2xf,,/3x10%, and
k,=k, Ve . Since (2) is a transcendental equation for f,, as
a function of d/ h, solutions must be obtained by numeri-
cal means.

A typical set of solutions of (2), calculated for e=77+
Jj0 and A=6.4176", is shown in Fig. 2. In this plot, the
resonant frequencies of the four lowest modes (n=1 to 4)
are shown as a function of the fill ratio d/h. For d/h=0
the resonant frequencies are integrally spaced, ie., f, =
920, 1840, 2760, and 3680 MHz. Note that the plate
spacing for this example has been chosen to make the
lowest order mode occur in the 915-MHz ISM band for
zero fill ratio.

As the dielectric thickness is increased, Fig. 2 shows
that all resonant frequencies decrease as anticipated, but
the frequencies fall in stairstep fashion rather than
smoothly. This behavior occurs because when there is a
voltage minimum in the vicinity of the dielectric surface,
the change in stored energy with d/h is minimized, there-
fore, the resonant frequency versus d/h curves exhibit a
plateau. This occurs near d/h=0 and also when the
dielectric sheet is approximately an integral number of
half-wavelengths thick measured in the dielectric. On the
other hand when the dielectric sheet is an odd number of
quarter wavelengths thick, there is a voltage maximum at
the dielectric surface, and the rate of change of stored
energy with d/h is maximized. At these points in Fig. 2
the resonant frequencies drop rapidly.

Another notable feature of Fig. 2 is that the plateaus of
the curves cluster about slowly upward-rising curves, indi-
cated by the dashed lines. These lines can readily be
shown to be solutions of the case in region 1, for which
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the dielectric surface at z=4d is replaced by a metallic
conductor. In this case (1) may be used to calculate the
resonant frequencies explicitly except that the plate spac-
ing is now h—d, thus

fn=15x108 N/(h—d), N=1,23---. (3)
The dashed line curves in Fig. 2 are the solutions of (3) for
N=1 to 4. Note that two mode numbering systems are
used in Fig. 2. The lower case letter n refers to the total
number of standing wave maxima in the air and the
dielectric combined, whereas the upper case letter N refers
to the number of voltage maxima: in the air over the
dielectric. In the case of lossy dielectrics it will become
evident that the latter mode numbering system is pre-
ferred.

For a different dielectric constant the location of a
given plateau in Fig. 2 will shift to a different d/h.
However, regardless of dielectric constant, all curves will
cluster about the same rising lines shown in Fig. 2. This
behavior occurs because when the dielectric sheet is an
integral number of half wavelengths thick, the metal plate
at z=0 is effectively transformed to the dielectric surface,
regardless of the dielectric constant.

B. Lossy Dielectric

The effect of loss in the dielectric may be included in
the above analysis [4] by replacing € by € —je”. In this
case the right-hand side of (2) becomes complex. The
resonant condition is specified by equating the real parts
of the two sides of (2):

Zy tan ky(h—d)=—Re [ Zy, tan k,d]. 4)

The left-hand side of (4) remains pure real because it is
not a function of e. The imaginary part of (2) indicates
that there must be a flow of power into the dielectric to
supply its losses. Actually, this power must be supplied at
the z=h plane, hence the assumption of a metal plane at
this point constitutes an approximation. In practice, a
metallic plane is used at this point and a coupling probe
or loop is used to transfer power through this plane. For
reasonably high Q’s (4) is an acceptable definition of
resonance, although it should be recognized that this may
not always be the case in a practical microwave oven.

The presence of loss has a very significant effect on the
curves of Fig. 2. Over the frequency range from 900 to
4000 MHz the loss tangent £” /¢’ of tap water [5] varieg
from 0.05 to 0.21; € remains relatively constant at 77. For
strict accuracy the variation of €’ with frequency should
be included in the calculations. However, since the goal in
this section is primarily qualitative rather than quantita-
tive, mode tuning curves have been calculated for an
assumed constant loss tangent of 0.13 (e=77—/10) inde-
pendent of frequency. When this is done the mode tuning
curves shown in Fig. 3 are obtained.

It is evident from Fig. 3 that the n» modes which were
distinct in Fig. 2 are now merged and form a continuous
set of N modes which are centered about the rising
N-mode lines. This is the reason for the earlier statement
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Fig. 3. Tuning of the first four modes by a lossy dielectric slab with
€=77—j10. Plane wave analysis, h =6.4176".

that when loss is present, it is better to characterize the
resonant modes by the number of voltage maxima above
the dielectric rather than by the total number of maxima
in the air and dielectric combined. Comparing Fig. 3 with
Fig. 2, note that for a given dielectric thickness the pres-
ence of loss in general reduces the number of modes
available for interaction in a given frequency range.

The effect of varying €” is found to be minimal. It is
noticeable only at the rapidly rising portions of the curves
in Fig. 3 where it is found to affect the degree of rounding
only slightly.

The behavior of mode tuning with dielectric thickness
in the parallel-plane case can be summarized as follows:

1) In the lossless case the resonant frequencies of all
modes decrease, although the plateaus of the various
modes cluster about upward-rising lines.

2) In the lossy case modes are linked together and it is
more meaningful to identify resonances in terms of the
number of voltage maxima outside the dielectric. In this
case the general trend of resonant frequency is upward,
although it occurs in a stairstep fashion.

3) In the limit of high conductivity all modes are de-
tuned upward smoothly and these modes constitute the
curves about which the solutions for the other two cases
cluster.

The same qualitative features can be seen from the results
of the rectangular cavity analysis presented in Section IV.
However, it will be shown that the magnitude of mode
tuning is reduced significantly in the rectangular cavity.
III. MEASUREMENT OF MODE TUNING IN A
MICROWAVE OVEN

The initial objective of the work on microwave ovens
presented here was to make a set of mode tuning measure-
ments which could be compared quantitatively with a set
of mode tuning calculations. Cold test mode measure-
ments were made on a GE Model J845003 free-standing
range, which was designed to operate in the 915-MHz
ISM band.

To reduce the complexity of the mode structure in the
oven of this unit, the following changes were made (see
Fig. 4).
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Fig. 4. Diagram of setup for measuring mode tuning in a GE Model
J845003 microwave oven cavity,

1) The mode stirrer, the metal rack, the bake and broil
heating elements, the thermostat, and other small projec-
tions into the oven were removed.

2) The oven was turned upside down so that the input
antenna was at the top rather than at the bottom.

3) A plastic liner was form fitted to the lower half of
the oven so that the entire cross section of the oven could
be occupied by a water load.

4) The capacitive loading disc was removed from the
end of the input antenna so that the Q’s of all resonances
would be high enough to be observed individually.

5) A small output loop, approximately one square inch
in area, was located in the x-z plane at the middle of the
edge formed by the top and right side of the overturned
oven,

For cold test purposes the magnetron was removed as
the power source and replaced with a Hewlett-Packard
Model 691D square-wave modulated frequency sweeper.
Approximately 1 ft of RF coaxial line, containing several
bends, was left in place between the sweeper line and the
input antenna, as indicated by the heavy lines in Fig. 4.
Attenuator pads were placed in the input and output lines
Just outside the oven to reduce spurious resonances not
associated with the oven itself. The ouput signal was
detected by a crystal and a HP Model 415B standing-
wave indicator. The output of the indicator was recorded
on an x-y recorder over frequency range from 900 to 1100
MHz. The sweeper calibration was found to be accurate
to =5 MHz.

With the placement of the input antenna and output
loop as described above, a fairly clean two-peak transmis-
sion characteristic was observed for most load conditions.
A typical set of transmission patterns is shown in Fig. 5
for water volumes ranging from 5.25 to 9.0 I in 0.25-1
steps. Clearly evident in this figure are the two modes.
The upper mode holds fairly constant in frequency at
1050 MHz. The lower frequency mode initially drifts
down in frequency, disappears, then reappears at a higher
frequency only to drift downward again.

The total volume of the oven was 104 1. Patterns similar
to those shown in Fig. 5 were recorded as the water
volume was increased from zero to 25 1 in 0.25-1 steps. A
typical set of patterns for heavy loading (17.25-21 1) is
shown in Fig. 6. The splitting of the lower peak in Fig. 6
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Fig. 5. Measured power transmission versus frequency in modified GE
oven for water volumes between 5.25 and 9 1.
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Fig. 6. Measured power transmission versus frequency in modified GE
oven for water volumes between 17.25 and 21 1.

will be discussed in Section IV. From recording the reso-
nant frequencies indicated on one hundred transmission
patterns like those shown in Fig. 5 and Fig. 6 the mode
tuning plots shown in Fig. 7(a) were made.

The two dominant modes shown in Fig. 7(a) behave in
distinctly different manners. The lower frequency mode,
the so-called “cooking” mode, starts at 915 MHz and
initially is tuned downward. As the water level is in-
creased, however, it fades out of sight only to reappear at
a higher frequency than it initially was. Subsequently, this
mode sawtooths its way upward in frequency in a manner
reminiscent of the modes shown in Fig. 3, although in Fig.
7(a) the plateaus are tilted rather than horizontal.
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Fig. 7. (a) Measured mode tuning versus water volume for two modes
in modified GE oven. (b) Computed mode tuning versus water volume
for TM, 3o mode (long dashes), TM;;; mode (solid), and TM,;, mode
(short dashes).

On the other hand, the mode at 1050 MHz is seen from
Fig. 7(a) to change in frequency only slightly. This be-
havior is depicted very clearly in Fig. 5 and Fig. 6. Careful
examination of these patterns discloses slight periodic
downward excursions, however, as indicated in Fig. 7(a).

Note that the lower mode in Fig. 7(a) is tuned upward
in frequency by about 50 MHz for the case of d/h=0.24.
Over this frequency range the data exhibit five upward
steps. The results of the plane wave analysis shown in Fig.
3 exhibit the same qualitative behavior—upward tuning in
stepwise fashion—but the steps are fewer in number and
the tuning for d/h=0.24 is six times greater in Fig. 3 than
in Fig. 7(a). In the next section the plane wave analysis is
modified to apply to three-dimensional resonant cavities
with slab loads.

IV. ANALYSIS OF A RESONANT CAVITY WITH A
DiIELECTRIC SLAB

Theory: The development in this section follows the
treatment by Marcuvitz for propagation in rectangular
wavelengths containing dielectric slabs [6]. His analysis is
limited to a full-width slab which is placed either along
the bottom or along the sidewall of the guide. The analy-
sis given below extends the results of Marcuvitz, devel-
oped for the dominant mode in waveguides, to resonant
rectangular cavities containing higher order modes.
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Referring to Fig. 1(c) Marcuvitz treats the waveguide
that would be formed by extending this geometry in the y
direction. He obtains an expression for the guide wave-
length A,y in the y direction. This expression is also
useful for cavity analysis since metallic walls may be
placed at planes separated by an integral number of
half-guide wavelengths in the y direction, i.e.,

b=m}\g(y)/2, m=1,2,3"'. (5)

Although Marcuvitz is concerned with propagation in
the y direction, he utilizes the “transverse resonance”
method for obtaining the propagation characteristics. In
this method one considers the composite guide at the
cutoff frequency for propagation in the y direction. At this
frequency propagation is solely in the transverse direction
which is normal to the dielectric surface, i.e., the z direc-
tion in Fig. 1(c). Two cases can be differentiated: 1) the
TE mode in which the E lines lie in the plane of the
dielectric surface, and 2) the TM mode in which the £
lines are normal to the plane of the dielectric. Note that in
the latter case the H lines lie in the plane of the dielectric
surface. The TE mode configuration is similar to the
one-dimensional case analyzed in Section II. The TM
mocle case has no obvious plane wave resonance counter-
part.

The equivalent transmission line circuit of Fig. 1(b) can
still be used for either the TE or TM case provided Z; is
defined appropriately for the dielectric constant of the
transmission line and the type of mode, namely,

Zyp=(377/Ve )N /\o) (6)
Zem=(377/Ve )(Ao/A,) (7N

where >\w/)\g=\£l ~(£./F) s A=A/ Ve, Ag=3X108/1,
and A, =27 /k,. Note carefully that the guide wavelengths

referred to in (6) and (7) are measured in the z direction.
Maxwell’s equations lead to the wave equation

VE+K*E=0 (8)

where k?=w%/(3<10%*. When (8) is solved in rectangu-
lar coordinates the familiar product type solution is ob-
tained with sinusoidal field variation in the three direc-
tions characterized by propagation constants k,, k,, and

X

k,. For any component of E, (8) yields the equation
2+ K2+ k2= k=0 /(3X 10°). )

The propagation constants in the x and y directions are
the same in both transmission lines in Fig. 1(b) and are set
by the boundary conditions, namely,

k.=al/a, [=1,2,3---
k,=am/b, m=1,2,3---. (10)

The propagation constants in the z direction are different
in the two lines and are given from (9) and (10} as

k= (2m /o)’ = (ml/a)* ~ (wm/ b’ (11)
k2= e(2m /No)’ — (ml/ @)’ —(am/b)’. (12)

The guide wavelengths in the two lines are obtained from
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TABLEI
ResoNANT TE AND TM MoDES IN EMPTY OVEN, 23X 17.25X%X 16
INCHES

 esomant_Fregnency
£ (t1Hz)
853 r4x
BS54 *x¥
B59
899
920 **x

962
1007
1031

2

1

[

2

1

1 932
z

2

0

2 1039
)

@ w NN FE N MO NS -

1
3
2
2
3
2
2
°
3
1
1

1059 **x

***indicates modes excited by center feed voltage probe.

the definition of propagation constant and guide wave-
length

kzl,2=277/>\g1.2 (13)

which in turn are related by (6) and (7) to the ratio of the
characteristic impedances of the two lines

(Zm/zoz)TE:f(Zoz/Zm)TM =k, / k- (14)
Inserting the ratio k,,/k,, from (11) and (12)
(201/Zoz)TE£€(Zoz/ ZO])TM

/2
2NV —(1/af ~(m/b) |
B 0 U0 e Y20 o K

2/~ (1/ a)* = (m/b)’

Thus (4) and (15) constitute the general condition for the
n resonant frequencies f,, =3X 108/, of a rectangular
cavity loaded between z=0 and z=d with a lossy dielec-
tric slab.

The Z, ratios (8.1.2) and (8.2.2) of Marcuvitz [6] may be
obtained from (15) by noting from (5) that the guide
wavelength measured in the y direction in Fig. 1 will be
2b/m for a cavity. Furthermore, note that /=1 and m=1
for the dominant TM mode, and that /=0 and m=1 for
the dominant TE mode, the only cases considered by
Marcuvitz.

An unpublished analysis by Ataras [7] gives a result
identical with (4) and (15) provided the TM definition of
Z, 1s used in (15). Ataras does not obtain the TE solution
because he assumed all three components of electric field
E,, E, and E, are nonzero. Actually, in the TE case the
E, component must be zero. Thus this case is not included
in the Ataras analysis because it would involve division by
zero in his derivation.

Calculations: The dimensions of the Model J845003
oven are a =23 in, b=17.25 in, and A= 16 in. In the empty
oven k,,=wn/h and the resonant frequencies without
dielectric loading may be calculated directly from (9).
There are eleven TM modes in the frequency range from
850 to 1060 MHz in the empty oven. There are an equal
number of TE modes at the same frequencies. These
modes are listed in Table 1.

Modes with the even x and y mode numbers / and m
will not be excited because the input antenna is vertical
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Fig. 8. Electric field patterns of selected TE and TM modes between
850 and 1060 MHz in empty oven.

and is located at the midpoints of the x and y dimensions
of the oven. This leaves only four pairs of TE and TM
modes to be considered, as indicated by the lines marked
with asterisks in Table 1. These modes are sketched in Fig.
8. It is evident that none of the TE modes in Fig. 8 will be
excited because they have no E component in the direc-
tion of the exciting E field of the vertical input antenna.
The TM,, mode cannot exist [8] because zero E-field
variation in the y direction requires the E-field pattern
shown by the dotted line to exist at the front and back
planes, an impossible condition at metallic surfaces. Thus
only three modes, all TM, remain to be considered: 112,
311, and 130. Note that the placement of the output loop
is appropriate to couple at the magnetic field maximum
for each of these modes.

Calculations for TM,,, TM;;;, and TM;;, mode tuning
have been carried out using (4) and the TM definition of
Z, given in (15). The computed results are shown in Fig.
7(b). The measured data in Fig. 7(a) can be compared
directly with the computed curves in Fig. 7(b). The agree-
ment for the TM;;; mode is very good, both in overall
upward tuning and in the structure. The agreement for the
TM,;, mode is quite good for large loads but for small
loads the theory gives larger downward deviations than
are observed. The TM;;, mode is barely visible in the
measured data, evidently because its Q is much lower
than for the other two modes. Only when the Q of the
TM,;,;; mode is low, as in the lower patterns of Fig. 6, is
the TM,,, mode visible as it passes through the TM;,,
mode.

As an independent verification that the TE;;; mode was
not being excited, its tuning characteristic was computed
using (4) and the TE definition from (15). The tuning
pattern for this mode is shown in Fig. 9 as a dashed line
curve. For comparison the TM;;, tuning pattern from Fig.
7(b) is shown by the solid-line curve. The dominant char-
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Fig. 9. Computed TE;;; mode tuning (dash) and computed TMj,
mode tuning (solid).

acteristic of the TE mode is that the frequency remains
nearly constant as it passes through the upward rising
N=1 curve. Contrasted to this behavior the TM mode
passes through the same points with a distinctly down-
ward slope. The measured data in Fig. 7(a) display a
downward slope in going through the same points, indi-
cating that power is being transmitted through the cavity
via the TM mode. Also, note from Fig. 8 that the TE,3,
mode cannot exist with zero variation in the z direction,
so its possible excitation cannot be used to explain the
observed constant frequency characteristic of the higher
frequency mode.

V. CONCLUSIONS

The mode tuning characteristic of a microwave oven
has been measured and computed as a function of load
height under idealized conditions. In the frequency range
from 850 to 1060 MHz the power transmission pattern is
dominated by the two modes TM;;; and TM,;, both
propagating in the z direction. The behavior of these
modes has been computed using the transverse resonance
method of Marcuvitz.

Agreement between measured and computed mode
tuning behavior is satisfactory for the TM;,; mode. For
large loads agreement is good for the TM,;, mode; for
small loads the measured frequency excursions are consid-
erably smaller than calculated, indicating that a more
accurate theoretical treatment is needed.

The goal of this work was to establish a simple geomet-
ric configuration in which measurements and computa-
tions of mode tuning by dielectric loads in microwave
ovens could be compared quantitatively. This goal was
reached with reasonable success. A challenging goal for
the future is to restore to the study as many features of a
practical oven as possible—arbitrary food size and place-
ment, heavy coupling, mode stirring, etc., and still retain
the ability to made accurate and useful computations of
mode tuning.
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Characteristics of Single and Coupled
Microstrips on Anisotropic Substrates

NICOLAOS G. ALEXOPOULOS, MEMBER, IEEE, AND CLIFFORD M. KROWNE, MEMBER, IEEE

Abstract—In this paper, the effect of an anisotropic substrate on the
characteristics of covered microstrip is presented for single and coupled
lines, The Green’s function is obtained in integral and series form for an
arbitrary anisotropic substrate. Computer programs based on the method
of moments approach [1], [2] are employed and results are presented in
graphical form for impedance Z, coupling constant X, and phase velocity
0, as functions of 7, /n, (the ratio of the substrate indices of refraction).
Z, K, and v, are studied for various w/ H, S/ H, and B/ H ratios where w
is the line width (w; and w, for coupled lines), S is the separation between
coupled lines, B is the separation between ground planes, and H is the
substrate thickness,

1. INTRODUCTION

XTENSIVE results exist in the literature on the prob-
lem of microstrip lines on isotropic substrates, e.g.,
[1]-{13]. Therein, the Green’s function of the problem is
obtained either by image theory [7] or by a direct solution
to the boundary value problem [13]. In most cases a
quasi-static approach is presented, which necessitates
solution to Laplace’s equation for a given set of boundary
conditions. A series of papers [8]-{12] presents solutions to
the dispersion problem, again for isotropic substrates.
Recently {14], [15], the problem of anisotropic sub-
strates was approached strictly from the numerical point
of view. Specifically, the authors employed the method of
finite differences to obtain the impedance characteristics
of a single microstrip line over a single-crystal sapphire
substrate. Since this crystal is uniaxial, the permittivity
dyadic is strictly diagonal with a relative permittivity
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Fig. 1. Cross section of covered single microstrip geometry.

along the optical axis ¢, =11.60, while on the plane per-
pendicular to this axis e =e¢ =9.40. The authors pro-
ceeded to compute an equivalent isotropic relative permit-
tivity €., which enables them to proceed with the com-
putations of the microstrip characteristics.

In the present paper, the problem of the anisotropic
substrate is approached from the boundary value point of
view. The boundary value approach necessitates the in-
troduction of a grounded cover, although this by no
means limits the usefulness of the solution since B (see
Fig. 1) can be allowed to recede to infinity. An image
theory approach would be much more preferable, but
there appears to be no prior references on how conductors
image over anisotropic media. By employing a quasi-static
approach, the Green’s function is incorporated into two
methods of moments computer programs. These programs
provide solutions to the single and coupled microstrip
problem by employing the usual methods for the com-
putation of self and mutual capacitances, characteristic
impedances, and phase velocities. The results are pre-
sented for various values of the relative permittivities in
the x, y, and z directions, and they are shown in Figs. 24
and 6 and 7.
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