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Microwave Oven Mode Tuning by Slhb
Dielectric Loads

THEODORE G. MIHRAN, FELLOW, IEEE

Afrstrwt-Cold-teat measurements have been made of mode tuning in a

mfcrowave oven cavity containing a slab water load of variable height. Two

distinct types of mode behavior are obaervtxh 1) a mode which is tuned

generafly upward in frequency, proceeding in sawtooth stew and 2) a

mode whose resonant frequency is nearly constang except for stight

downward perturbations at regntar intervafs.

TWIOtheoretical treatments are prcaented to understand and verify the

obserwd mode behavior. A plane wave aaafysis is found to illustrate most

of the qualitative aspects of mode toning, such as its stairstep behavior and

the phenomenon of mode liafdng by loss. A more accurate, quantitative

description of mode behavior is obtained by generafiig dispersion rela-

tionships which have been developed in the past for the analysis of

reetangubw wavegoides with dielectric slabs.

Agreement between theory and measurement is good in genera except

for light loads in case 2 above.

I. INTRODUCTION

I N SPITE of the rapidly growing commercial impor-

tance of microwave ovens, their design remains prim-

arily an empirical art. In 1976 Osepchuk [1] attributed the

lack of oven theory to “the over-whelming complexity of

the oven-food configuration as an object for study involv-

ing Maxwell’s equations.” This paraphrases the observa-

tion made ten years earlier by Puschner [2] that the

presence of a dielectric load in a microwave oven creates

a situation in which “cavity resonance is very involved

and can only be clarified in the end by experiment.”

Recently a computer program for the general analysis of

simple dielectric discontinuities in three-dimensional

structures has been developed [3]. This program appears

to be well suited for numerical studies of microwave oven

mode tuning by dielectric loads. To use such a program

effectively it is useful to study first the related one- and

two-dimensional cases as is done here, These studies pro-

vide general insights into the true nature of the three-di-

mensional problem and can guide the application of the

more accurate (but more expensive) model to only those

cases which are most significant.

A one-dimensional analysis of the effect of a slab of

Iossy dielectric on the resonant frequency of the space

bounded by two metallic planes is given in Section II.

This analysis discloses a number of concepts that are

fundamental to mode tuning in microwave ovens. A prob-

lem more closely related to the geometry of practical

microwave ovens can be solved rather easily, namely that
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of a rectangular cavity containing a Iossy dielectric slab

which completely fills two of the three cavity dimensions.

The analysis of this case, presented in Section IV, shows

that mode tuning for a given dielectric fill ratio is greatly

reduced compared to the one-dimensional case of Section

II.

In order to verify the validity of the analysis given in

Section IV, a detailed set of mode tuning measurements

was made in a commercial 915-MHz microwave oven

which had been modified to accept a dab water load.

These cold-test measurements, presented in Section III,

indicate that two resonant modes dominate the transmis-

sion characteristic of this oven over the frequency range

from 900 to 1100 MHz. One of these modes is adequately

described by the theory presented in Section IV. Some

aspects of the tuning of the other mc~de are described

reasonably well by the present theory, but for light loads

it is evident that the analysis given here needs further

modification.

II. PARALLEL PLANE T13M-MoDE f3NALYSIS

A. Lossless Dielectric

Consider two parallel metallic planes at z = O and z = h,

as indicated by the upper and lower lines in Fig. 1(a). For

TEM wave propagation in the z direction this structure

will resonate at frequencies for which the plate spacing h

is an integral number of half wavelengths. In MKS units

the resonant frequencies are

fon =3 x 108 rz/2A, n= 1,2,3.... (1)

Between the plates in Fig. l(a) consider that a dielectric

sheet extends from z = O to z = d, defining region 2. The

volume above the sheet is defined as region 1, If the

relative dielectric constant c of the sheet is greater than

unity, additional electric field energy will be stored in the

sheet and all of the resonant frequencies given by (1) will

be reduced. The equation which establishes resonant

frequency as a function of the fraction d/h of the space

occupied by the dielectric sheet can be written by inspec-

tion, referring to the equivalent transmission line circuit

shown in Fig. 1(b). By taking a reference plane at the
surface of the dielectric and noting that the impedance

Zol tan Icl(h – d) looking in the + z direction must equal

the negative of the impedance seen in the – z direction

one obtains the expression
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(a) (b) (c)

Fig. 1. (a) Configuration for plane wave analysis.(b) Equivalent circuit
at dielectric surface. (c) Resonant cavity with dielectric slab at bottom,. .
completely filling x and y dimensions.-
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Fig. 2. Tuning of the first four modes by a losslessdielectric slab with
c=77 –jO. Plane wave analysis,h = 6.4176.

Zol tan kl(h– d) = – ZOZ tan kzd (2)

where 201 =377, ZOZ= 377/fi, kl =2@&/3 X 108, and

k2 = k, K . Since (2) is a transcendental equation for fonas

a function of d/h, solutions must be obtained by numeri-

cal means.
A typical set of solutions of (2), calculated for ● = 77 +

jO and h = 6.4176”, is shown in Fig. 2. In this plot, the

resonant frequencies of the four lowest modes (n= 1 to 4)

are shown as a function of the fill ratio d/h. For d/h= O

the resonant frequencies are integrally spaced, i.e., jOH=

920, 1840, 2760, and 3680 MHz. Note that the plate

spacing for this example has been chosen to make the

lowest order mode occur in the 915-MHz ISM band for

zero fill ratio.

As the dielectric thickness is increased, Fig. 2 shows

that all resonant frequencies decrease as anticipated, but

the frequencies fall in stairstep fashion rather than

smoothly, This behavior occurs because when there is a

voltage minimum in the vicinity of the dielectric surface,

the change in stored energy with d/h is minimized, there-

fore, the resonant frequency versus d~ h curves exhibit a
plateau. This occurs near d/h = O and also when the

dielectric sheet is approximately an integral number of

half-wavelengths thick measured in the dielectric. On the

other hand when the dielectric sheet is an odd number of

quarter wavelengths thick, there is a voltage maximum at

the dielectric surface, and the rate of change of stored

energy with d/h is maximized. At these points in Fig. 2

the resonant frequencies drop rapidly.

Another notable feature of Fig. 2 is that the plateaus of

the curves cluster about slowly upward-rising curves, indi-

cated by the dashed lines. These lines can readily be

shown to be solutions of the case in region 1, for which

the dielectric surface at z = d is replaced by a metallic

conductor. In this case (1) may be used to calculate the

resonant frequencies explicitly except that the plate spac-

ing is now h – d, thus

j&= 1.5x 108 N/(h-d), N=1,2,3 . . . . (3)

The dashed line curves in Fig. 2 are the solutions of (3) for

N= 1 to 4. Note that two mode numbering systems are

used in Fig. 2. The lower case letter n refers to the total

number of standing wave maxima in the air and the

dielectric combined, whereas the upper case letter N refers

to the number of voltage maxima in the air over the

dielectric. In the case of Iossy dielectrics it will become

evident that the latter mode numbering system is pre-

ferred.

For a different dielectric constant the location of a

given plateau in Fig. 2 will shift to a different d/h.

However, regardless of dielectric constant, all curves will

cluster about the same rising lines shown in Fig. 2. This

behavior occurs because when the dielectric sheet is an

integral number of half wavelengths thick, the metal plate

at z = O is effectively transformed to the dielectric surface,

regardless of the dielectric constant.

B. Lossy Dielectric

The effect of loss in the dielectric may be included in

the above analysis [4] by replacing ~ by d –j~”. In this

case the right-hand side of (2) becomes complex. The

resonant condition is specified by equating the real parts

of the two sides of (2):

Zol tan kl(h – d)= –Re [Zoz tan kzd]. (4)

The left-hand side of (4) remains pure real because it is

not a function of c The imaginary part of (2) indicates

that there must be a flow of power into the dielectric to

supply its losses. Actually, this power must be supplied at

the z = h plane, hence the assumption of a metal plane at

this point constitutes an approximation. In practice, a

metallic plane is used at this point and a coupling probe

or loop is used to transfer power through this plane. For

reasonably high Q‘s (4) is an acceptable definition of

resonance, although it should be recognized that this may

not always be the case in a practical microwave oven.

The presence of loss has a very significant effect on the

curves of Fig. 2. Over the frequency range from 900 to
4000 MHz the loss tangent c“ / d of tap water [5] varie~

from 0.05 to 0.21; d remains relatively constant at 77. For

strict accuracy the variation of t“ with frequency should

be included in the calculations. However, since the goal in

this section is primarily qualitative rather than quantita-

tive, mode tuning curves have been calculated for an

assumed constant loss tangent of 0.13 (c= 77 – j 10) inde-

pendent of frequency. When this is done the mode tuning

curves shown in Fig. 3 are obtained.

It is evident from Fig. 3 that the n modes which were

distinct in Fig. 2 are now merged and form a continuous

set of N modes which are centered about the rising

N-mode lines. This is the reason for the earlier statement
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Fig. 3, Tuning of the first four modes by a Iossy dielectric slab with
6=77 –jIO. Plane wave analysis,~ =6.4176”.

that when loss is present, it is better to characterize the

resonant modes by the number of voltage maxima abooe

the dielectric rather than by the total number of maxima

in the air and dielectric combined. Comparing Fig, 3 with

Fig. 2, note that for a given dielectric thickness the pres-

ence of loss in general reduces the number of modes

available for interaction in a given frequency range.

The effect of varying c“ is found to be minimal. It is

noticeable only at the rapidly rising portions of the curves

in Fig. 3 where it is found to affect the degree of rounding

only slightly.

The behavior of mode tuning with dielectric thickness

in tlhe parallel-plane case can be summarized as follows:

1) In the lossless case the resonant frequencies of all

modes decrease, although the plateaus of the various

modes cluster about upward-rising lines.

2} In the lossy case modes are linked together and it is

more meaningful to identify resonances in terms of the

number of voltage maxima outside the dielectric. In this

case the germ-al trend of resonant frequency is upward,

although it occurs in a stairstep fashion.

3) In the limit of high conductivity all modes are de-

tuned upward smoothly and these modes constitute the

curves about which the solutions for the other two cases

cluster.

The same qualitative features can be seen from the results

of the rectangular cavity analysis presented in Section IV.

However, it will be shown that the magnitude of mode

tuning is reduced significantly in the rectangular cavity.

III. MEASUREMENT OF MODE TUNING IN A

MICROWAVE OVEN

The initial objective of the work on microwave ovens

presented here was to make a set of mode tuning measure-

ments which could be compared quantitatively with a set

of mode tuning calculations. Cold test mode measure-
ments were made on a GE Model J845003 free-standing

range, which was designed to operate in the 915-MHz
ISM band.

To reduce the complexity of the mode structure in the
oven of this unit, the following changes were made (see
Fig, 4).

Fig. 4. Diagram of setup for measuring mode tuning in a GE Ivfodel
J845003microwave oven cavity.

1) The mode stirrer, the metal rack, the bake and broil

heating elements, the thermostat, and other small projec-

tions into the oven were removed.

2) The oven was turned upside down so that the input

antenna was at the top rather than at tlhe bottom,

3) A plastic liner was form fitted to the lower half of

the oven so that the entire cross section of the oven could

be occupied by a water load.

4) The capacitive loading disc was removed from the

end of the input antenna so that the Q‘s of all resonances

would be high enough to be observed individually.

5) A small output loop, approximately one square inch

in area, was located in the x-z plane at the middle of the

edge formed by the top and right side of the overturned

oven,

For cold test purposes the magnetrc,n was removed as

the power source and replaced with a Hewlett-Packard

Model 69 lD square-wave modulated frequency sweeper.

Approximately I ft of RF coaxial line, containing several

bends, was left in place between the sweeper line and the

input antenna, as indicated by the heavy lines in Fig. 4.

Attenuator pads were placed in the input and output lines

just outside the oven to reduce spuricms resonances not

associated with the oven itself. The ouput signal was

detected by a crystal and a HP Model 415B standing-

wave indicator. The output of the indicator was recorded

on an x-y recorder over frequency range flrom 900 to 1100

MHz. The sweeper calibration was found to be accurate
to + 5 MH~.

With the placement of the input antenna and output

loop as described above, a fairly clean two-peak transmis-

sion characteristic was observed for most load conditions.

A typical set of transmission patterns is shown in Fig. 5

for water volumes ranging from 5.25 toI 9.01 in 0.25-1

steps. Clearly evident in this figure are the two modes.

The upper mode holds fairly constant in frequency at

1050 MHz. The lower frequency mode initially drifts

down in frequency, disappears, then reappears at a higher
frequency only to drift downward again.

The total volume of the oven was 1041. Patterns similar

to those shown in Fig. 5 were recorded as the water

volume was increased from zero to 25 1 in 0.25-1 steps. A

typical set of patterns for heavy loading (17.25–21 1) is

shown in Fig. 6. The splitting of the lower peak in. Fig. 6
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Fig. 5. Measured power transmission versus frequency in modified GE

oven for water volumes between 5.25 and 91.
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Fig. 6. Measured power transmission versus frequency in modified GE

oven for water volumes between 17.25 and 211.

will be discussed k Section IV. From recording the rmo-

nant frequencies indicated on one hundred transmission

patterns like those shown in Fig. 5 and Fig. 6 the mode

tuning plots shown in Fig. 7(a) were made.

The two dominant modes shown in Fig. 7(a) behave in

distinctly different manners. The lower frequency mode,

the so-called “cooking” mode, starts at 915 MHz and

initially is tuned downward. As the water level is in-

creased, however, it fades out of sight only to reappear at

a higher frequency than it initially was. Subsequently, this

mode sawtooths its way upward in frequency in a manner

reminiscent of the modes shown in Fig. 3, although in Fig.

7(a) the plateaus are tilted rather than horizontal.
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Fig. 7. (a) Measured mode tuning versus water volume for two modes
in modified GE oven. (b) Computed mode tuning versus water volume
for T’M130 mode (long dashes), TNf31 ~ mode (solid), and TM,,2 mode
(short dashes).

On the other hand, the mode at 1050 MHz is seen from

Fig. 7(a) to change in frequency only slightly. This be-

havior is depicted very clearly in Fig. 5 and Fig. 6. Careful

examination of these patterns discloses slight periodic

downward excursions, however, as indicated in Fig, 7(a).

Note that the lower mode in Fig. 7(a) is tuned upward

in frequency by about 50 MHz for the case of d/h= 0.24.

Over this frequency range the data exhibit five upward

steps. The results of the plane wave analysis shown in Fig.

3 exhibit the same qualitative behavior—upward tuning in

stepwise fashion—but the steps are fewer in number and

the tuning for d/h =0.24 is six times greater in Fig. ‘3 than

in Fig. 7(a). In the next section the plane wave analysis is

modified to apply to three-dimensional resonant ~avities

with slab loads.

IV. ANALYSIS OF A WSOMNT CAVITY WITH A

DIJ3LECTRIC ~Lm

Theo~: The development in this section follows the

treatment by Marcuvitz for propagation in rectangular

wavelengths containing dielectric slabs [6]. His analysis is

limited to a full-width slab which is placed either along

the bottom or along the sidewall of the guide. The analy-

sis given below extends the results of Marcuvitz, devel-

oped for the dominant mode in waveguides, to resonant

rectangular cavities containing higher order modes.
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Referring to Fig. l(c) Marcuvitz treats the waveguide

that would be formed by extending this geometry in they

direction. He obtains an expression for the guide wave-

leng~h \(Y) in the y direction. This expression is also
useful for cavity analysis since metallic walls may be

placed at planes separated by an integral number of

half-guide wavelengths in they direction, i.e.,

b = mA~(Y)/2, m=l,2,3 . . . . (5)

Although Marcuvitz is concerned with propagation in

the y direction, he utilizes the “transverse resonance”

method for obtaining the propagation characteristics. In

this method one considers the composite guide at the

cutoff frequency for propagation in they direction. At this

frequency propagation is solely in the transverse direction

which is normal to the dielectric surface, i.e., the z direc-

tion in Fig. l(c). Two cases can be differentiated: 1) the

TE mode in which the E lines lie in the plane of the

dielectric surface, and 2) the TM mode in which the E

lines are normal to the plane of the dielectric. Note that in

the latter case the H lines lie in the plane of the dielectric

surface. The TE mode configuration is similar to the

one-dimensional case analyzed in Section 11. The TM

mock case has no obvious plane wave resonance counter-

part.

The equivalent transmission line circuit of Fig. l(b) can

still be used for either the TE or TM case provided ZO is

defined appropriately for the dielectric constant of the

transmission line and the type of mode, namely,

z,,== (377/fi )&,/Am) (6)

zTM=(377/ti )(Am/Ag) (7)

whese Am/&=

c’

1 –(f /f)2 Am =Ao/fi , AO=3 x lo’/j,

and & = 2~/kZ. ote carefully that the guide wavelengths

referred to in (6) and (7) are measured in the z direction.

M axwell’s equations lead to the wave equation

V2E+k2E=0 (8)

whe:re k2 = ti%/(3 x 108)2. When (8) is solved in rectangu-

lar coordinates the familiar product type solution is ob-

tained with sinusoidal field variation in the three direc-

tions characterized by propagation constants kX, kY, and

k=. For any component of E, (8) yields the equation

k;+ k;+ k;= k2 =(.02e/(3 X 108)2. (9)

The propagation constants in the x and y directions are

the same in both transmission lines in Fig. l(b) and are set

by the boundary conditions, namely,

kX = wl/a, 1=1,2,3 . . .

k,= inn/b, m=l,2,3 -.. . (10)

The propagation constants in the z direction are different

in the two lines and a~e given from (9) and (10) as

k~, = (2m/AO)2 – (n7/a)2 – (mn/b)2 (11)

k~z==e(2m/&)2- (n7/a)2 – (nm/b)2. (12)

The guide wavelengths in the two lines are obtained from
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TABLE I
~SONANT Tf3 AND TM ~ODIIS IN ~R4PTY @JEIN, 23 X 17.25 X 16

INCHES

, ,“ n f, (0,”.1

112.”. 853 ,.”

>ol’,~ 854 ...

**O 85,

202 8,,

,11.,. ,20 ,.-

2?, 932

21, ,62

0,2 1007

,20 1031

122 ,03,

,30 . . . 1059 Q_

***indicates modes excited by center feed voltage Probe.

the definition of propagation constant and guide wave-

length

k =2 T/Ag,,2
ZI,2

(13)

which in turn are related by (6) and (7) to the ratio of the

characteristic impedances of the two lines

(~oI/~02)m= c(Zo2/~oI)TM=: &Jkzl. (14)

Inserting the ratio kzz/k,l from(11) and (112)

(zOI/z02)TE=E(z02 /zOl)TM

[ IC(2/h.)2–(1/a)2–(m/b)2 1’2—— (15)
= (2/?.0n)2-(1/a)2- (m/b)’ “

Thus (4) and (15) constitute the general condition for the

n resonant frequencies ~0~= 3 X 108/& of a rectangular

cavity loaded between z = O and z = d withl a lossy dielec-

tric slab.

The 230ratios (8. 1.2) and (8.2.2) of Marcuvitz [6] maybe

obtained from (15) by noting from (5) that the guide

wavelength measured in the y direction in Fig. 1 will be

2b/ m for a cavity. Furthermore, note that 1=1 and m = 1

for the dominant TIM mode, and that l’= () and m= 1 for

the dominant TE mode, the only cases considered by

Marcuvitz.

An unpublished analysis by Ataras [7] gives a result

identical with (4) and (15) provided the TM definition of

20 is used in (15). Atm-as does not obtain the TE solution

because he assumed all three components of electric field

EX, EY, and E= are nonzero. Actually, in the TE case the

E, component must be zero. Thus this case is not included

in the Ataras analysis because it would involve division by

zero in his derivation.
Calculaiion,s: The dimensions of the Model J845003

oven are a =23 in, b = 17.25 in, and h = 1[6in. In the empty

oven k=~= mz/ h and the resonant frequencies without
dielectric loading may be calculated directly from (9).

There are eleven TM modes in the frecluency range from

850 to 1060 MHz in the empty oven. ~lere are an equal

number of TE modes at the same frequencies. These

modes are listed in Table I.

Modes with the even x and y mode numbers 1 and m

will not be excited because the input antenna is vertical
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Fig. 9. Computed T&l, mode tuning (dash) and computed TM31,
mode tuning (solid).
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Fig. 8. Electric field patterns of selected TE and TM modes between
850 and 1060 MHz in empty oven.

and is located at the midpoints of the x and y dimensions

of the oven. This leaves only four pairs of TE and TM

modes to be considered, as indicated by the lines marked

with asterisks in Table I. These modes are sketched in Fig.

8. It is evident that none of the TE modes in Fig. 8 will be

excited because they have no E component in the direc-

tion of the exciting E field of the vertical input antenna.

The TM301 mode cannot exist [8] because zero E-field
variation in the y direction requires the E-field pattern

shown by the dotted line to exist at the front and back

planes, an impossible condition at metallic surfaces. Thus

only three modes, all TM, remain to be considered: 112,

311, and 130. Note that the placement of the output loop

is appropriate to couple at the magnetic field maximum

for each of these modes.

Calculations for TMl ,2, TM31 ~, and TM130 mode tuning

have been carried out using (4) and the TM definition of

Z. given in (15). The computed results are shown in Fig.

7(b). The measured data in Fig. 7(a) can be compared

directly with the computed curves in Fig. 7(b). The agree-

ment for the TM3 ~~ mode is very good, both in overall

upward tuning and in the structure. The agreement for the

TM130 mode is quite good for large loads but for small

loads the theory gives larger downward deviations than

are observed. The TMI ,Z mode is barely visible in the

measured data, evidently because its Q is much lower

than for the other two modes. Only when the Q of the

TM31 ~ mode is low, as in the lower patterns of Fig. 6, is

the TM I ~z mode visible as it passes through the TM31 ~

mode.

As an independent verification that the TE31, mode was
not being excited, its tuning characteristic was computed

using (4) and the TE definition from (15). The tuning

pattern for this mode is shown in Fig. 9 as a dashed line

curve. For comparison the TM3, ~ tuning pattern from Fig.

7(b) is shown by the solid-line curve. The dominant char-

acteristic of the TE mode is that the frequency remains

nearly constant as it passes through the upward rising

N= 1 curve. Contrasted to this behavior the TM mode

passes through the same points with a distinctly down-

ward slope. The measured data in Fig. 7(a) display a

downward slope in going through the same points, indi-

cating that power is being transmitted through the cavity

via the TM mode. Also, note from Fig. 8 that the TE130

mode cannot exist with zero variation in the z direction,

so its possible excitation cannot be used to explain the

observed constant frequency characteristic of the higher

frequency mode.

V. CONCLUSIONS

The mode tuning characteristic of a microwave oven

has been measured and computed as a function of load

height under idealized conditions. In the frequency range

from 850 to 1060 MHz the power transmission pattern is

dominated by the two modes TM31, and TM130, both

propagating in the z direction. The behavior of these

modes has been computed using the transverse resonance

method of Marcuvitz.

Agreement between measured and computed mode

tuning behavior is satisfactory for the TM31, mode. For

large loads agreement is good for the TM130 mode; for

small loads the measured frequency excursions are consid-

erably smaller than calculated, indicating that a more

accurate theoretical treatment is needed.

The goal of this work was to establish a simple geomet-
ric configuration in which measurements and computa-

tions of mode tuning by dielectric loads in microwave

ovens could be compared quantitatively. This goal was

reached with reasonable success. A challenging goal for

the future is to restore to the study as many features of a

practical oven as possible—arbitrary food size and place-

ment, heavy coupling, mode stirring, etc., and still retain

the ability to made accurate and useful computations of

mode tuning.
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Characteristics of Single and Coupl(~cl
Microstrips m Anisotropic Substrates

NICOLAOS G. ALEXOPOULOS, MEMBER, IEEE, AND CLIFFORD M. KROWNE, MEMBER, IIEEE

Abstract—In this paper, the effect of an anisotropic substrate on the

characteristics of covered microstrip is presented for singfe and coupled

fines. The Green’s function is obtained in integral and series form for an

arbftmry anisutropic substrate. Computer programs based on the method

of moments approach [1], [2] are employed and resufts are presented in

graplkal foror for impedance Z, coupfing constmrt K, and phase velocity

UP RS frmetions of nx / ~ (the ratio of the substrate indices of refraction).

Z, K, and UPare studied for various w/ H, S/H, and B/H ratios where w

is the fine width (w] and W2 for coupled lines), S is the separation between

coupled fines, B is the separation betmen ground pkmea, and H is the

substrate thickuess.

I. INTRODUCTION

E XTENSIVE results exist in the literature on the prob-

lem of microstrip lines on isotropic substrates, e.g.,

[ 1]-[13]. Therein, the Green’s function of the problem is

obtained either by image theory [7] or by a direct solution

to the boundary value problem [13]. In most cases a

quasi-static approach is presented, which necessitates

solution to Laplace’s equation for a given set of boundary

conditions. A series of papers [8]–[ 12] presents solutions to

the dispersion problem, again for isotropic substrates.

Recently [14], [15], the problem of anisotropic sub-

strates was approached strictly from the numerical point

of view. Specifically, the authors employed the method of

finite differences to obtain the impedance characteristics

of a single microstrip line over a single-crystal sapphire

substrate. Since this crystal is uniaxial, the permittivity

dyadic is strictly diagonal with a relative perrnittivity
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Fig. 1. Cross section of covered single microstrip geometry.

along the optical axis ~ = 11.60, while on the plane per-

pendicular to this axis .EX= t= = 9.40. ‘The authors pro-

ceeded to compute an equivalent isotropic relative permit-

tivity c,~~ which enables them to proceed with the com-

putations of the microstrip characteristics.

In the present paper, the problem of the anisotropic

substrate is approached from the boundary value point of

view. The boundary value approach necessitates the in-

troduction of a grounded cover, although this by no

means limits the usefulness of the solution since B (see

Fig. 1) can be allowed to recede to infinity. An image

theory approach would be much more preferable, but

there appears to be no prior references on how conductors

image over anisotropic media. By employing a quasi-static

approach, the Green’s function is incorporated into two

methods of moments computer programs. Ilese programs

provide solutions to the single and coupled rnicrostrip
problem by employing the usual methods for the com-

putation. of self and mutual capacitances, characteristic

impedances, and phase velocities. The results are pre-

sented for various values of the relative permittivities in

the x, y, and z directions, and they are shown in Figs. 24

and 6 and 7.
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